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Abstract.—Summarizing individual gene trees to species phylogenies using two-step coalescent methods is now a standard
strategy in the field of phylogenomics. However, practical implementations of summary methods suffer from gene tree
estimation error, which is caused by various biological and analytical factors. Greatly understudied is the choice of gene
tree inference method and downstream effects on species tree estimation for empirical data sets. To better understand
the impact of this method choice on gene and species tree accuracy, we compare gene trees estimated through four
widely used programs under different model-selection criteria: PhyloBayes, MrBayes, IQ-Tree, and RAxML. We study
their performance in the phylogenomic framework of >800 ultraconserved elements from the bee subfamily Nomiinae
(Halictidae). Our taxon sampling focuses on the genus Pseudapis, a distinct lineage with diverse morphological features,
but contentious morphology-based taxonomic classifications and no molecular phylogenetic guidance. We approximate
topological accuracy of gene trees by assessing their ability to recover two uncontroversial, monophyletic groups, and
compare branch lengths of individual trees using the stemminess metric (the relative length of internal branches). We
further examine different strategies of removing uninformative loci and the collapsing of weakly supported nodes into
polytomies. We then summarize gene trees with ASTRAL and compare resulting species phylogenies, including comparisons
to concatenation-based estimates. Gene trees obtained with the reversible jump model search in MrBayes were most
concordant on average and all Bayesian methods yielded gene trees with better stemminess values. The only gene tree
estimation approach whose ASTRAL summary trees consistently produced the most likely correct topology, however, was
IQ-Tree with automated model designation (ModelFinder program). We discuss these findings and provide practical advice
on gene tree estimation for summary methods. Lastly, we establish the first phylogeny-informed classification for Pseudapis
s. l. and map the distribution of distinct morphological features of the group. [ASTRAL; Bees; concordance; gene tree
estimation error; IQ-Tree; MrBayes, Nomiinae; PhyloBayes; RAxML; phylogenomics; stemminess]

Accurate gene trees are critical for species tree
reconstruction through gene tree summary methods.
Also known as two-step coalescent approaches,
summary methods infer species trees under the
multispecies coalescent model (MSC; Rannala and Yang
2003), relying on a priori generated gene trees as input.
In contrast to the traditionally used concatenation-
approach, for which multiple gene sequences
are concatenated and analyzed in a supermatrix,
coalescent-based methods incorporate information on
the individual evolutionary history of each locus and
can therefore specifically model discordance between
gene trees and species trees caused by incomplete
lineage sorting (ILS; e.g., Maddison 1997; Kubatko and
Degnan 2007; Degnan and Rosenberg 2009; Mirarab
2019, and references therein).

Gene trees are treated as independent but fixed
observations by contemporary summary methods
(Xu and Yang 2016). Methods to estimate gene trees,
information about the confidence of topological
placements (branch support), or branch lengths
are generally not accounted for. In principle,
gene tree topology provides the sole source of
information, rendering gene trees the “Achilles’ Heel”
of coalescent-based summary methods by critical voices

(Springer and Gatesy 2016). With coalescent approaches
being regarded by some in the field as paradigm shifting
(e.g., Edwards 2009; Edwards et al. 2016; Bravo et al.
2019), and being emphatically challenged by others
(e.g., Gatesy and Springer 2013, 2014; Springer and
Gatesy 2016), the need to understand the effects of gene
tree accuracy on species tree inference has sparked
significant research over the past years.

A greatly understudied aspect of summary
approaches is the way gene trees are estimated
before summarizing them. While an extensive body
of theoretical studies (e.g., Bayzid and Warnow 2013;
Patel et al. 2013; Mirarab et al. 2014b; Bayzid et al. 2015;
Roch and Steel 2015) and empirical research (Blom
et al. 2016; Hosner et al. 2016; Meiklejohn et al. 2016;
Sayyari et al. 2017) showed that gene tree estimation
error (GTEE) decreases the accuracy of summary
methods, we have limited knowledge of how different
methods of gene tree inference compare. Few studies
used more than one method of gene tree reconstruction
and even fewer compared their performance. Two
of these (Xi et al. 2015; Sayyari et al. 2017) found
maximum likelihood (ML) estimates of RAxML
(Stamatakis 2014) more accurate than those of PhyML
(Guindon et al. 2010) or the speed-optimized FastTree
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2 SYSTEMATIC BIOLOGY

(Price et al. 2010), respectively. Similarly, Zhang
et al. (2018) found that IQ-Tree gene tree estimates
had consistently better likelihood values over
RAxML/ExaML, PhyML, and FastTree (in decreasing
order) in an extensive assessment of empirical data
sets. Another empirical study on birds assessed four
tree-building methods (RAxML, GARLI, PhyML, and
MrBayes) in their ability to infer a predefined clade,
and found Bayesian gene trees to be slightly more
accurate topologically than trees obtained by ML
(Meiklejohn et al. 2016; which is line with observations
of Mirarab 2019). However, differences in branch lengths
remain unstudied, and all these studies applied site-
homogeneous substitution models partitioned by entire
gene alignments.

In order to better understand the impacts of method
choice on gene and species tree estimation, our
study compares a set of widely used algorithms
that significantly differ in their underlying statistical
frameworks, implementation of substitution models,
and computational demands. Specifically, we compare
the ML implementations RAxML (ver. 8, Stamatakis
2014) and IQ-Tree (ver. 2, Minh et al. 2020) under different
model-selection strategies, as well as the Bayesian
programs MrBayes (Ronquist et al. 2012) and PhyloBayes
(Lartillot et al. 2009; Lartillot et al. 2013). The latter
program is particular because it implements the site-
heterogenous mixture model CAT-GTR (Lartillot and
Philippe 2004; Lartillot et al. 2009). In contrast to previous
research, we assess and compare both differences in
topology and branch lengths of gene trees inferred with
different methods, and further examine the resulting
species tree inferences obtained through the popular
summary method ASTRAL.

As a study system, we investigate the challenging
and yet unexplored phylogenomic landscape of
ultraconserved elements (UCEs; Faircloth et al. 2012)
from the subfamily Nomiinae (Halictidae). These bees
represent a major group in the Old World tropics
and comprise over 600 described species (Ascher and
Pickering 2020), yet their phylogeny has never been
the focus of a comprehensive molecular phylogenetic
study (Danforth et al. 2012). A thoroughly developed
phylogenetic hypothesis is needed to evaluate the
competing morphology-based classifications of the
group and would greatly inform the process of settling
on a rank-based taxonomy of monophyletic groups.
UCEs render our research applicable to contemporary
studies, as UCEs are increasingly applied all across
the metazoan Tree of Life, and best practices are being
progressively refined (e.g., Portik and Wiens 2020; Van
Dam et al. 2020). They further provide a particularly
interesting framework for examining GTEE, as they
are short with few informative sites (see also Molloy
and Warnow 2018), and nucleotide substitution rates
are heterogeneously distributed with conserved core
and variable flanking regions (Faircloth et al. 2012;
Smith et al. 2014). This could impact model fit, since
model parameters are estimated over very differently
conserved nucleotide sequences (Zhang et al. 2018;

Tagliacollo and Lanfear 2018). The research presented
herein provides insights on choosing different gene
tree estimation methods and consequences for gene
tree topology and branch lengths. Ultimately, we
show that gene trees inferred with Bayesian methods
perform better in recovering a set of uncontroversial,
predefined clades, and have greater relative length
of internal branches than gene trees inferred with
maximum likelihood methods. This greater topological
concordance, however, does not always translate into
more accurate summary trees (i.e., similarity to the
species tree that we deem correct), and summary tree
accuracy improves for all methods when loci with poor
information content are removed.

MATERIALS AND METHODS

Taxon Sampling
In order to establish a test data set with closely

and distantly related lineages of nomiine bees, we
focused on a readily identifiable group, the genus
Pseudapis. Specifically, we compiled a comprehensive
taxon sampling of 20 species of the Pseudapis group,
including all six lineages that have been considered
genera or subgenera in previous classifications of
this group (Table 1). This represents about one-third
of all described taxa of Pseudapis s. l. We further
included 10 lineages of major nomiine groups from
four continents, among them Austronomia (Australia,
Africa, Asia), Acunomia (North America, Africa, Asia),
Lipotriches (Africa, Asia), and Macronomia (Africa, Asia).
Additionally, we included UCE sequence data from the
currently available genomes of Halictidae: Lasioglossum
albipes, Dufourea novaeangliae, and Acunomia melanderi
(Kocher et al. 2013; Kapheim et al. 2015; Kapheim et al.
2019).

Acquisition and Processing of UCEs
A detailed version of the applied molecular methods

and the bioinformatic processing, including a step-
by-step documentation of all used commands, is
available in the Supplementary Material available on
Dryad at http://dx.doi.org/10.5061/dryad.z08kprrb6.
Briefly, we followed a standard Proteinase-K based
phenol/chloroform protocol (from Saghai-Maroof et al.
1984, modified) to extract DNA from the hindlegs
of specimens or by soaking the whole specimen
in extraction buffer. DNA was quantified, sheared,
and prepared with dual-indexed libraries and TruSeq
adapters (Glenn et al. 2019). We followed the protocol
of Faircloth et al. (2015) and the modifications from
Blaimer et al. (2016a,b). Target enrichment for 29 samples
was conducted with the enhanced HymV2-ant UCE
probe-set or the principal HymV2 set (Branstetter
et al. 2017b), both manufactured by MYcroarray, Inc.
(see Supplementary Material available on Dryad).
Enrichment success was assessed with RT-qPCR. After
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TABLE 1. Taxon sampling

No. of
captured NCBI

Species Collection locality UCE loci SRA ID

Acunomia melanderi (Cockerell 1906) USA: WA, Walla Walla Co., Touchet; see Kapheim et al. (2019) 2359 n/a
Afronomia circumnitens (Cockerell 1946) South Africa: Mpumalanga Province, 7 km S. Graskop 1518 SRR7970542
Austronomia australica (Smith 1875) Australia: South Australia, Jervois Co., Cowell 1538 SRR7970543
Curvinomia chalybeata (Smith 1875) Vietnam: Cát Bà Island, Cat Ba National Park 1560 SRR7970540
Dieunomia (Dieunomia) heteropoda (Say 1824) USA: Nebraska, Cherry CO. 1922 SRR7970541
Dieunomia (Epinomia) triangulifera (Vachal 1897) USA: Kansas, Douglas Co., Lawrence 1784 SRR7970538
Dufourea novaeangliae (Robertson 1897) USA: NY, Cayuga Co., Fair Haven Beach; Kapheim et al. (2015) 2343 n/a
Hoplonomia elliotii (Smith 1875) Cambodia: Siem Reap Province 1632 SRR7970539
Lasioglossum albipes (Fabricius 1781) France: Mt. Ventoux; see Kocher et al. (2013) 2420 n/a
Lipotriches (Patellotriches) collaris (Vachal 1903) South Africa: Limpopo Prov. 75 km SW Thabazimbi 1621 SRR7970536
Lipotriches (Stellotriches) justiciae (Pauly 2014) South Africa: Limpopo Prov., 8.5 km N. Vivo 1723 SRR7970537
Macronomia clavisetis (Vachal 1910) Ethiopia: Oromia Region, Koka 1615 SRR7970534
Nomiapis bispinosa (Brullé 1832) Spain: Almeria Province 1639 SRR7970535
Nomiapis diversipes (Latreille 1806) Spain: Granada Province 1585 SRR7970530
Pachynomia amoenula (Gerstäcker 1870) South Africa: KwaZulu-Natal, Kwangwanase 1736 SRR7970531
Pachynomia flavicarpa (Vachal 1903) Cameroon: Adamawa Province, Meiganga 1094 SRR7970528
Pachynomia tshibindica (Cockerell 1935) Burundi: Kayanza Province, Kibira 1642 SRR7970529
Pseudapis nilotica (Smith 1875) UAE: Dubai, Nakhalai 967 SRR7970526
Pseudapis cinerea (Friese 1930) South Africa: N. Cape Province, 4 km NW Hotazel 1499 SRR7970527
Pseudapis flavolobata (Cockerell 1911) India: Rajasthan, Jaisalmer District 1614 SRR7970524
Pseudapis interstitinervis (Strand 1912) Kenya: Great Rift Valley, Kajiado Co., Olorgesailie 1297 SRR7970525
Pseudapis kenyensis (Pauly 1990) Kenya: Great Rift Valley, Kajiado Co., Olorgesailie 1444 SRR7970532
Pseudapis oxybeloides (Smith 1875) Pakistan: Punjab, University of Agriculture Faisalabad 1526 SRR7970533
Pseudapis pandeana (Strand 1914) Kenya: Great Rift Valley, Baringo Co., Mogotio 1738 SRR7970552
Pseudapis riftensis (Pauly 1990) Kenya: Great Rift Valley, Kajiado Co., Olorgesailie 1454 SRR7970551
Pseudapis siamensis (Cockerell 1929) Laos: Vientiane Pref., Tat Mun Waterfall 1695 SRR7970550
Ruginomia rugiventris (Friese 1930) South Africa: KwaZulu-Natal, Maputaland Tembe Elephant Park 863 SRR7970549
Steganomus ennediensis (Pauly 1990) Niger: Zinder Region, 49 km NW Tanout 1142 SRR7970548
Steganomus junodi (Gribodo 1895) Ghana: Cape Coast, Univ. Cape Coast campus 1403 SRR7970547
Stictonomia aliceae (Cockerell 1935) South Africa: Limpopo Province, 29 km NW Waterpoort 1449 SRR7970546
Stictonomia sangaensis (Pauly 1990) Cameroon: Adamawa Province, Meiganga 1516 SRR7970545
Stictonomia schubotzi (Strand 1911) Gabon: Ogcoué-Ivindo Dist. 550 SRR7970544

The scientific names of the included species and the respective collection localities. The classification follows the work of Pauly
(1990–2014). Assembled UCE sequence data and the nucleotide matrices are available from our Dryad repository (http://dx.doi.org/
10.5061/dryad.z08kprrb6).

inferring concentrations for each pool, they were
combined at equimolar concentrations and size-selected
for fragments between 250 bp and 800 bp. Sequencing
was conducted with an Illumina HiSeq 2500 device and
150 bp paired-end reads at the Cornell Biotechnology
Resource Center (Cornell BRC).

Raw reads were trimmed with the Trimmomatic
(Bolger et al. 2014) wrapper Illumiprocessor (Faircloth
2013), followed by read assessments with FastQC
(Andrews 2019). Reads were assembled with Trinity
(Grabherr et al. 2011), as called from Phyluce (Faircloth
2016) under the default settings. We used LASTZ (Harris
2007) to query the three included genomes for regions
that correspond to the UCE probe-set and used Phyluce
to parse the results into a sqlite database. We then
extracted the matches with 850 bp of flanking regions up-
and downstream of the identified UCE core and treated
the extracted sequences as Trinity assemblies.

The genome extracts and the assemblies of the de
novo sequenced UCEs were then matched against the
probe set. In order to exclude potentially contaminating
sequences (Bossert and Danforth 2018), we required a
minimum sequence overlap of 80% with at least 85%
sequence identity. UCE matches were then aligned per

locus, that is, each locus representing an individual
alignment, using the L-INS-i algorithm of MAFFT
v7.31 (Katoh and Standley 2013). We allowed loci to
be incomplete and trimmed each locus with Gblocks
(Castresana 2000) according to the “relaxed” conditions
of Talavera and Castresana (2007). After trimming, we
finalized a sequence matrix with 80% completeness,
ensuring that every locus is represented by at least
80% of all taxa (=25 taxa). Lastly, individual alignments
were examined by eye to identify and remove potential
misalignments.

Phylogenetic Reconstruction
Phylogenetic reconstructions were carried out using

Bayesian and maximum likelihood methods on the
concatenated matrices, as well as summarizing gene
trees under the multispecies coalescent model (Rannala
and Yang 2003).

Gene Tree Inferences and the PhyloBayes Wrapper EZ-PB.—
We generated six different sets of gene tree estimates,
three using maximum likelihood methods and three
using Bayesian inference. Each method was carried
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out on the exact same individual alignments, which
were partitioned by locus. For the maximum likelihood
estimates, we used RAxML (ver. 8, Stamatakis 2014) to
find the best-scoring ML tree under the GTR+G model
and 200 bootstrap replicates. We then used IQ-Tree (ver.
2, Minh et al. 2020) under the same substitution model,
discrete gamma, and 1000 bootstrap approximations
(UFBoot2; Hoang et al. 2018). In order to compare the
effects of choosing an automated approach to select
substitution models, we further generated a set of gene
trees by using IQ-Tree and the ModelFinder program
(“MFP”, Kalyaanamoorthy et al. 2017), to search for
the best-fitting substitution models, including tests
for optimal rate heterogeneity across sites (FreeRate
model). To compare these sets of gene trees to Bayesian
estimates, we used MrBayes (ver. 3.2.7, Ronquist et al.
2012) on the individual alignments using GTR+G. We
executed two runs with each two chains and used
the option to automatically stop analyses once the
average standard deviations of split frequencies (ASDSF)
were ≤0.01. We then repeated the MrBayes analyses
with the reversible jump (Huelsenbeck et al. 2004)
option, which is a model-averaging approach that allows
the chains to sample the parameter space across all
possible models that MrBayes can accommodate. The
respective MrBayes blocks that were used to estimate the
MrBayes gene trees are provided in the Supplementary
Material available on Dryad. Lastly, in order to infer
UCE gene trees with a substitution model that allows
for among-site heterogeneity of substitution rates, we
employed the Bayesian implementation PhyloBayes
(Lartillot et al. 2009; Lartillot 2013), which implements
infinite site-heterogeneous mixture-models (CAT/CAT-
GTR; Lartillot and Philippe 2004). However, PhyloBayes
is difficult to execute on large numbers of separate
alignments, such as individual UCE loci. To facilitate
this task, we developed the wrapping software EZ-
PB, which is an easy-to-use Python wrapper around
the PhyloBayes package. As such, the script itself does
not reconstruct phylogenies but executes the parallel
version of PhyloBayes and its diagnostic tools according
to specified parameters. Briefly, the script executes the
following tasks sequentially on each alignment in a
set folder: (i) execute a desired number of chains,
(ii) automatically check for sufficient sampling and
convergence between chains until the values fall below
the specified thresholds or if the specified maximum
number of cycles is reached; then terminate the chains,
(iii) organize and name “good” (i.e., chains have
converged) and “bad” (i.e., chains have not converged)
consensus trees and associated analyses files based on
convergence criteria of the respective chains, and (iv)
summarize the results in a spreadsheet. Parameters
under which PhyloBayes is executed through EZ-PB
are adjustable with a configuration file. The default
parameters were designated according to the PhyloBayes
authors’ recommendation for very good runs: maximum
discrepancies between bipartitions (maxdiff) of <0.1
(using bpcomp), effective sample sizes (ESS) of the

log-likelihood of >300, and a relative log-likelihood
differences of <0.1 (using tracecomp). To generate gene
trees for the present study, we used the default settings
and two chains.

Concatenation-Based Methods.—First, we calculated an
ML tree using IQ-Tree 2 (Minh et al. 2020) and the
concatenated 80% matrix. We partitioned the matrix
by locus, used the ModelFinder search to assign
substitution models, designated edges to be linked,
and calculated 1,000 bootstrap approximations. Using
the previously estimated IQ-Tree gene trees (MFP),
we estimated gene concordance factors (gCF) and site
concordance factors (sCF), and mapped them onto the
species tree. We also calculated the best-scoring ML
tree using RAxML and 200 rapid bootstrap replicates
(“-f a” option). Lastly, we executed three independent
PhyloBayes chains on the 80% matrix using the parallel
version of the program. We used the CAT-GTR model,
ran at least 10,000 cycles for each chain, discarded
100 cycles as burn-in, and sampled every other tree.
We considered convergence to be sufficient when the
maximum and mean differences between bipartitions
reached 0.0 and the relative differences of the log-
likelihoods were ≤0.25 with ESS values being >250. We
failed to achieve parameter convergence when running
MrBayes on the partitioned concatenated supermatrix.

Comparing and Evaluating UCE Gene Trees
In order to assess different properties of the calculated

gene trees, we applied a range of different measures
(summarized in Fig. 1, red box). First, we approximated
GTEE by using a measure of concordance for each
individual gene tree, as implemented in the R package
treespace (Jombart et al. 2017). The main advantage
of this approach is that it allows us to compare gene
trees without the same set of tips, as not a single
one of the examined gene trees includes all taxa. This
measure of gene tree concordance is not to be confused
with the concordance factors that we estimated with
IQ-Tree, which we only used to provide additional
measures of branch support for the concatenation
analyses. Instead, this measure of gene tree concordance,
which is described in detail in Kendall et al. (2018),
assesses how well a given gene tree fulfills a set of
predefined, monophyletic groups, which are treated as
reference categories. The measure is on a scale from
0 to 1, where 1 indicates a gene tree that is fully
compatible with a reference tree, which consists only of
the tips representing the test categories. As categories,
we designated two uncontroversial clades: the genus
Dieunomia, which represents the earliest branching
lineage of Nomiinae, and the remaining Nomiinae.
Monophyly of these nomiine lineages has been recovered
in every species tree analyses in the present study and
in virtually all previously conducted molecular research
that involved these groups (e.g., Danforth et al. 2004;
Hedtke et al. 2013; Cardinal et al. 2018). Internode branch
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FIGURE 1. Summary of the developed workflow.

lengths leading to these clades are generally relatively
long, indicating that these nodes are likely not affected
by ILS. We also included the outgroup as third category
and rooted every gene tree on both outgroup taxa, if
present. We rooted on only one outgroup taxon if only
one was present and rooted on Lasioglossum albipes if the
outgroups were not sistergroups.

Second, we assessed the quartet status of the
individual gene trees in respect to the summary tree
inferred from all gene trees of a reconstruction method.
This means, for example, that we first summarized
all RAxML gene trees with ASTRAL-III (Zhang et al.
2018) and then assessed the quartet status of each
individual RAxML gene tree in respect to this summary
tree. Quantifying quartets of gene trees allowed us to

measure (i) quartets that are identical in both trees,
(ii) quartets that are conflicting, and (iii) quartets that
are not resolved in the gene tree. Assessing unresolved
quartets allows us to better understand the relationship
of gene tree accuracy and resolution and represents a
major advantage over other measures of tree similarity
when evaluating gene trees with polytomies (see Smith
2019 for further discussion). We quantified quartets for
individual gene trees using the R package Quartet (Smith
2020) and normalized over the sum of all quartets in
each given gene tree. This assessment of quartet status
was repeated for every gene tree estimation method and
under three regimes of collapsing weakly supported
nodes: (i) no nodes being collapsed to polytomies,
(ii) retracting nodes of ≤30 bootstrap support or ≤0.3
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6 SYSTEMATIC BIOLOGY

posterior probability, and (iii) retracting nodes of ≤50
BS or ≤0.5 PP (Fig. 1).

In order to understand differences in branch lengths
of different gene tree estimation methods, we calculated
the stemminess metric (Fiala and Sokal 1985; Rohlf et al.
1990). Stemminess is a measure of branch lengths that
quantifies the relative length of internal branches of a
phylogeny. Low stemminess means that trees have a
greater proportion of overall length concentrated along
with the tips. Long terminal branches can be indicative
of saturation and can suffer from long-branch attraction
(Longhorn et al. 2010), which is why high values for
stemminess are favorable. Stemminess has previously
been used as a proxy for tree quality, assuming that
higher stemminess confers a better signal-to-noise ratio
(Kück et al. 2012) and that reconstruction artifacts are
reduced. The stemminess metric used here is a variation
of the cumulative stemminess function (from Fiala and
Sokal 1985) that has been more widely used recently
(e.g., Longhorn et al. 2010; Kück et al. 2012; Tong et al.
2018). We report stemminess as the proportion, from
0 to 1, of the total tree length represented by internal
(nonterminal) branches. Stemminess values for all gene
trees from the same estimation method were compared
and the performance of each method was ranked from 1
(most stemmy) to 6 (least stemmy) for every individual
UCE. We also tested the molecular clock hypothesis for
each individual gene tree using an R script from the
repository of Borowiec et al. (2015, see Supplementary
Material available on Dryad).

Lastly, we ranked gene trees of each method based
on a set of tree and alignment characteristics of
the underlying UCEs: average node support values
(bootstrap values or posterior probabilities), alignment
length, proportion of variable sites, and % missing data.
We then generated subsets of the 25 and 100 UCEs that
performed best in each category and explicitly examined
the performance of these subsets in comparison to all
loci.

Gene Tree Summary Analyses

Summary analyses under the multispecies coalescent
model were carried out with ASTRAL-III (Zhang
et al. 2018) and default settings. In order to examine
topological differences of summary trees calculated
with different sets of informative loci, we calculated
ASTRAL trees for every method and three sets of
loci with different degrees of informative sites. To this
end, we filtered alignments for the 25% and 50% of
loci with the lowest proportion of variable sites and
summarized these subsets of loci into species trees, as
well as summarizing all loci. The resulting gene trees
were compared pairwise using the Kendall and Colijn
metric (Kendall and Colijn 2016) and resulting values
were hierarchically clustered using Ward’s criterion (D2;
see Murtagh and Legendre 2014).

RESULTS

UCE Capture Success
We sequenced a total of ∼54 million reads for 29

samples, with an average of ∼1,869,572 (min. 165,217–
max. 3,868,765) reads per taxon. Assembling these reads
yielded Trinity assemblies with an average of 58,834
(2407–176,652) contigs per sample. We extracted an
average of 2374 (2343–2420) UCE loci from the three
genomes and captured between 550 and 1922 UCEs from
our de novo sequenced samples (average of 1474; Table 1).
The generated 80% matrix had the following properties:
867 loci, 576,041 bp length, 26.8% missing nucleotides.

Phylogeny of Pseudapis s.l.
Species trees inferred in this study are generally

congruent except for three areas on the tree (Fig. 2, nodes
A–C). The maximum likelihood estimates and Bayesian
inference of the concatenated supermatrix converged on
the same topology. The concatenation species trees are
unambiguously supported by very high bootstrap values
or posterior probabilities, but the three problematic
areas have very low gene concordance factors (gCF).
Particularly node A, which is further characterized by
very short internodes, has gene concordance factors of
less than 20.

Topological conflict is caused by different gene
tree summary analyses. Two of the conflicting nodes
(Fig. 2, nodes B–C) are parents to terminals with very
low information content, whereas the third node (A)
involves a deeper split with very short internodes and
short coalescent times (Supplementary Figs. S1 and S2
available on Dryad), but good sequence representation.
ASTRAL summaries solve these nodes with five
different alternative topologies summarized in Figure 3.

Gene Tree Inferences and Gene Tree Properties
For 867 UCE alignments, PhyloBayes chains of 853

runs sampled the parameter space sufficiently and
converged in less than 30,000 cycles. We therefore used
only those 853 gene trees for the comparisons among all
gene tree inference approaches and gene tree summaries
and discarded the remaining 14 loci for downstream
comparisons and analyses across methods.

Concordances for solving the three predefined clades
are similar among methods but are greater for gene trees
inferred with Bayesian methods (Fig. 4, Supplementary
Fig. S3A available on Dryad). In 495 of 853 cases,
concordance values of all methods were identical,
but at least one method differed in the remaining
358 examined sets of gene trees. Among Bayesian
methods, gene trees inferred through MrBayes with
the reversible jump model search are most concordant
on average, and rank most often as first, closely
followed by MrBayes (GTR+G) and PhyloBayes (Fig. 4,
Supplementary Fig. S3A available on Dryad). Among
ML methods, IQ-Tree with automated model selection
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FIGURE 2. PhyloBayes consensus tree of Pseudapis s. l. and closely related Nomiinae based on 867 concatenated ultraconserved elements.
The tree is topologically equivalent to the consensus tree of the IQ-Tree 2 ML analysis, the best-scoring tree of the RAxML run. Node support
corresponds to 1.0 posterior probability on all nodes for PhyloBayes, while support values shown are (from left to right): UFBootstrap values,
gene concordance factors (gCF) and site concordance factors (sCF). Circled letters A–C indicate nodes that are conflicting with at least one
summary analysis conducted in this study. Percentage of informative sites (indicated by *) was calculated with DIVEIN (Deng et al. 2010) using
all loci represented by at least 29 taxa (=90%).

(MFP) performed best on average. This makes both
approaches of automated model selection (reversible
jump for MrBayes and MFP for IQ-Tree, respectively)
preferable over their GTR+G counterparts. Gene trees
inferred with RAxML were the least concordant and rank
lower than gene trees calculated with other methods.

The quartet assessment of the uncollapsed gene trees
shows very similar quartet status for the different
gene tree methods and reveals the greatest topological
dissimilarity between gene trees and their summary
trees in UCE loci with few informative sites (Fig. 5,
Supplementary Figs. S4 and S5 available on Dryad).
This trend is most clear for the first 20% of the
least informative loci, whereas the remaining bins are
similar in their overall quartet status. The different
methods, however, respond differently to collapsing
bifurcations with low node support to polytomies. Gene
trees inferred with IQ-Tree have lower proportions of
unresolved quartets and have relatively more shared and

conflicting quartets than other methods (Supplementary
Figs. S4 and S5 available on Dryad). This shows that
nodes of IQ-Tree gene trees are less often collapsed and
therefore have generally higher node confidence values
than other methods. For the two bins of least informative
loci, collapsing poorly supported nodes reduces the
amount of conflicting quartets slightly more than the
amount of shared quartets. This means that more
conflicting quartets are transformed into unresolved
quartets than shared quartets, which is desirable for
subsequent summary analyses.

Branch lengths of gene trees inferred with different
methods differ considerably. Generally, Bayesian gene
trees are substantially stemmier than their ML
counterparts (Fig. 6, Table 2, Supplementary Fig. S3B
available on Dryad). Their stemminess is higher on
average and they rank higher compared to ML gene
trees when comparing gene trees inferred from the same
alignments. In only 6 out of 853 sets of gene trees was
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FIGURE 3. Topological differences of the 30 ASTRAL summary analyses conducted in this study. Dendrograms of species tree topologies are
based on pairwise Kendall & Colijn distances, hierarchically clustered using Ward’s criterion (D2). Leaf labels (except concatenation) correspond
to the method used to estimate the gene trees that were given as input trees for ASTRAL summary analyses. For example, subfigure b) shows
that the concatenation analyses and all but one of the ASTRAL summary trees (the one estimated from RAxML gene trees) recovered identical
topologies (i.e., Kendall–Colijn distances of 0); the ASTRAL tree estimated from RAxML gene trees differs from the other trees by a different
placement of the Lipotriches clade, as indicated by placement (4). The concatenation tree topology corresponds to Figure 2 and was not included in
the locus removal and node collapsing experiments. Analyses in bold produced the most likely true species tree topology. Topological differences
indicated by white circles involve samples with low sequencing success, whereas gray circles indicate conflict in the resolution of a deeper node
with good sequence representation. rj = reversible jump; MFP = ModelFinder Plus; GTRG, generalized time-reversible model with discrete
gamma.

the stemmiest gene tree inferred with an ML method.
While there are substantial differences between Bayesian
and ML methods, differences among only Bayesian or
only ML methods are insignificant on the continuous
scale from 0 to 1 (Fig. 6). Counting how different gene
trees rank according to their stemminess on a locus-
by-locus basis, however, shows that PhyloBayes gene
trees are most stemmy in ∼60% of all cases (509 out
of 853, Supplementary Fig. S3B available on Dryad),
followed by MrBayes (rj) and MrBayes (GTR+G). Testing
the molecular clock hypothesis for the individual gene
trees revealed that the Bayesian gene trees behave more
similar to an ultrametric tree than the ML estimates, with
MrBayes (rj) gene trees being most clock-like on average
(Fig. 6, Table 2).

The 100 and 25 loci with the highest average
bootstrap support or posterior probabilities have a

greater concordance, are stemmier, and behave more
clock-like than the average across all loci (Fig. 6, Table 2).
They further perform better than the other examined
subsets of loci, such as the longest, the least gappy, and
the most variable UCEs. While the values of the different
node support subsets are generally very similar, they
usually rank in decreasing order, with the 25 highest
scoring loci being slightly favorable over the 100 loci
subsets. They further perform better than the longest,
the least gappy, and the most variable UCEs.

The total computational wall times differ substantially
between different approaches of gene tree estimation,
and PhyloBayes is by far the most time-intensive strategy
(Fig. 4). For inferring the PhyloBayes gene trees with EZ-
PB on a local workstation (Dell Precision with Xeon®
E5-2687W v4 @ 3.00 GHz; 64 GB DDR4 SDRAM), the
total wall time summed up to 754.5 h (∼31 days),
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FIGURE 4. Concordance and computational time for the six different gene tree estimation approaches compared in this study. Display of
concordance is reduced to only those 358 comparatively examined loci in which concordance values differed between analyses (see Supplementary
Material available on Dryad for full version), whereas computational time reflects all 867 loci. Raincloud plots (Allen et al. 2019) of concordance
show whiskers extending up to 0.5×IQR. Ranks of concordance can be tied. Computational time is per locus and sums up as follow: 31.4 days
(PhyloBayes), 4 and 5.3 days (MrBayes and GTR+G / rj, respectively), 1.6 and 1.5 h (IQ-Tree 2 GTR+G / MFP, respectively), and 8.5 h (RAxML).

FIGURE 5. Quartet status of gene trees from loci with increasing proportion of variable sites. Each bin contains 85 individual loci, except of bin
10 with 88. Point of reference for quantifying shared and conflicting quartets of individual gene trees is the summary tree of the same method
(i.e., each RAxML gene tree gets scored against the ASTRAL summary tree of all RAxML gene trees). Whiskers extend up to 0.5×IQR.
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TABLE 2. Statistics of UCE subsets with different characteristics
PhyloBayes MrBayes GTRG MrBayes rj IQ-Tree GTRG IQ-Tree MFP RAxML

Category [loci] Metric (mean ± SD) (mean ± SD) (mean ± SD) (mean ± SD) (mean ± SD) (mean ± SD)

“Best” 25 Stemminess 0.326 (±0.053) 0.330 (±0.048) 0.326 (±0.048) 0.324 (±0.051) 0.329 (±0.046) 0.329 (±0.044)
“Best” 100 0.329 (±0.057) 0.328 (±0.053) 0.328 (±0.053) 0.306 (±0.060) 0.309 (±0.054) 0.312 (±0.054)
100 longest 0.291 (±0.068) 0.290 (±0.064) 0.290 (±0.063) 0.256 (±0.071) 0.254 (±0.070) 0.256 (±0.071)
100 most variable 0.299 (±0.063) 0.299 (±0.062) 0.299 (±0.062) 0.265 (±0.073) 0.260 (±0.076) 0.264 (±0.074)
100 least gappy 0.311 (±0.062) 0.308 (±0.058) 0.309 (±0.058) 0.272 (±0.068) 0.271 (±0.070) 0.272 (±0.068)
All loci 0.305 (±0.064) 0.302 (±0.061) 0.302 (±0.061) 0.260 (±0.075) 0.260 (±0.074) 0.260 (±0.075)

“Best” 25 Clocklikeness 22.607 (±14.703) 20.791 (±12.853) 20.639 (±12.304) 23.264 (±13.024) 21.879 (±13.198) 20.164 (±14.879)
“Best” 100 20.981 (±11.765) 21.133 (±11.192) 20.805 (±10.754) 24.849 (±15.811) 23.956 (±14.850) 22.872 (±14.263)
100 longest 32.365 (±20.885) 30.995 (±19.272) 30.828 (±19.019) 43.164 (±30.230) 44.017 (±30.840) 43.221 (±30.040)
100 most variable 26.518 (±16.624) 26.087 (±16.896) 26.121 (±16.921) 37.832 (±28.522) 40.501 (±31.111) 38.684 (±29.741)
100 least gappy 25.878 (±14.106) 25.629 (±13.583) 25.617 (±13.600) 35.608 (±22.451) 36.210 (±24.144) 36.030 (±22.692)
All loci 27.579 (±16.461) 27.039 (±15.762) 26.941 (±15.682) 40.418 (±29.632) 40.128 (±28.343) 40.890 (±29.796)

“Best” 25 Concordance 0.948 (±0.166) 0.914 (±0.183) 0.933 (±0.166) 0.938 (±0.142) 0.891 (±0.187) 0.829 (±0.232)
“Best” 100 0.884 (±0.197) 0.891 (±0.187) 0.892 (±0.188) 0.885 (±0.188) 0.904 (±0.178) 0.855 (±0.211)
100 longest 0.788 (±0.246) 0.824 (±0.237) 0.825 (±0.238) 0.794 (±0.253) 0.7865 (±0.265) 0.769 (±0.265)
100 most variable 0.774 (±0.217) 0.779 (±0.223) 0.786 (±0.224) 0.725 (±0.248) 0.721 (±0.251) 0.708 (±0.250)
100 least gappy 0.794 (±0.225) 0.809 (±0.222) 0.807 (±0.229) 0.783 (±0.248) 0.771 (±0.258) 0.764 (±0.260)
All loci 0.784 (±0.236) 0.794 (±0.234) 0.796 (±0.234) 0.748 (±0.256) 0.753 (±0.256) 0.732 (±0.261)

with an average computation time of 52.3 min per
locus. Bayesian approaches under site-homogeneous
models with MrBayes performed considerably faster
with approximately 4 days (MrBayes GTR+G; average
6.72 min per locus) and 5.3 days (MrBayes rj; average 8.86
min per locus) total wall time, using the same alignments
and the same computational setup. In contrast, the fastest
ML tree searches were achieved with IQ-Tree and MFP
model selection (1.5 h total, 6.27 s per locus), which is
nearly two magnitudes faster than the MrBayes runs and
about 500× faster than PhyloBayes.

DISCUSSION

Reducing GTEE through Method Choice
Studying GTEE is critical for two-step summary

approaches under the multispecies coalescent model.
Regardless of the general debate of concatenation vs.
coalescence (e.g., Springer and Gatesy 2016 vs. Edwards
et al. 2016), there is little controversy over the need to
provide summary methods with accurate gene trees and
reduce GTEE.

Recent research led to a number of strategies to
reduce the effects of GTEE on coalescent analyses.
Most prominent approaches involve statistical binning
(Bayzid and Warnow 2013; Mirarab et al. 2014a;
Bayzid et al. 2015; but see Streicher et al. 2018,
Adams and Castoe 2019), identification and removal
of outlier loci or taxa (e.g., Wickett et al. 2014; Mai
and Mirarab 2018; Leebens-Mack et al. 2019), removal
of fragmentary data (Sayyari et al. 2017), testing pre-
defined clades through gene genealogy interrogation
(GGI; Arcila et al. 2017), or collapsing very poorly
resolved gene tree nodes to polytomies (Zhang et al.
2018). Surprisingly little attention has been paid to
explore if GTEE could be reduced by using more

accurate gene tree estimation methods. Our results
reveal substantial differences in gene tree topology
and branch lengths between trees inferred by different
methods. These findings show great potential to reduce
GTEE by carefully choosing the most appropriate
estimation method. They further indicate that significant
amounts of gene tree/species tree incongruence in
current phylogenomic data sets are not caused by true
genealogical discordance, but by incorrect estimation.

We approximate gene tree accuracy by assessing
concordance for a set of three deep-branching,
uncontroversial clades, which have been recovered as
monophyletic by every species tree analyses in the
present study and previously published research. This
topology-based measure shows higher concordance for
the Bayesian methods, indicating that GTEE is slightly
lower for Bayesian gene trees over maximum likelihood
estimates. Meiklejohn et al. (2016) show a favorable
performance of MrBayes in comparison to some ML
methods and Mirarab (2019) anecdotally reports the
potential that MrBayes may perform slightly better than
RAxML. Our results are in line with this and reveal
MrBayes and the reversible jump model selection as
the preferred strategy to optimize concordance. Using
MrBayes and GTR+G allows us to compare gene tree
estimates with those of RAxML and IQ-Tree in the
same modeling framework, and shows that gene trees
of MrBayes are more concordant than the ML estimates.
This means that differences in concordance cannot be
attributed to different substitution models, but to the
underlying statistical framework of the programs.

Species Tree Estimates and Assessment of Conflicting Nodes
Our study is based on empirical data and the

“true” species tree is not known. All species tree
estimates, however, produce very similar topologies,
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supporting previous taxonomic classifications based
on morphology. Topological differences of ASTRAL
species trees are restricted to three nodes (Fig. 2).
Two of these nodes involve the two samples with the
worst sequencing success, Ruginomia rugiventris and
Stictonomia schubotzi. Both these taxa have over 75%
undetermined positions in the concatenated matrix and
are present in less than half of all loci. This translates
into significant amounts of missing data types 1 and
2 (following Hosner et al. 2016): sample sequence data
is entirely missing in an individual alignment (type 1)
and sequence data of the respective samples is present
in individual alignments, but is (highly) fragmented
(type 2). Type 1 missing data can bias summary analyses
under the MSC (Xi et al. 2016) and individual gene
trees are differentially weighted based on their taxon
representation, effectively giving gene trees with fewer
samples less weight (Gatesy et al. 2019). Type 2 is
problematic as well, as it increases GTEE and can
translate into inaccurate species trees (Hosner et al.
2016; Sayyari et al. 2017). Estimation error of gene trees
involving R. rugiventris and S. schubotzi is therefore high,
as they come with great proportions of missing data
type 2: several individual alignments do not have a
single unique site pattern in the sequences of these
two samples. Concatenation approaches are statistically
inconsistent under the MSC model (Roch and Warnow
2015), but can produce more accurate species trees when
GTEE is very high (e.g., Mirarab and Warnow 2015;
Molloy and Warnow 2018; Mirarab 2019). In this light,
it is most likely that the topological placements of these
samples in the concatenated analyses (Fig. 2), which are
topologically corroborated by about half of all ASTRAL
summary trees (Fig. 3), reflect the true placement of these
samples in the species tree. Interestingly, most summary
trees of Bayesian gene tree methods fail to converge
on the topology that we deem correct, and ASTRAL
summaries of IQ-Tree gene trees resolve these nodes
favorably in nearly every analysis.

The third node that creates topological conflict
between species tree analyses is a deeper split in the tree,
characterized by short internodes and short coalescent
times (Fig. 2, Supplementary Figs. S1 and S2 available on
Dryad). In contrast to the other two conflicting nodes,
sequence representation is very good for all involved
tips, implying that missing data is not the cause for
inconsistent results. Because of the short branching
times, it is probable that incongruence due to ILS renders
this node problematic. Most ASTRAL summary trees
converge on the same topology at this node, which
is topologically equivalent to the concatenated species
tree. In contrast, species tree summaries of RAxML gene
trees consistently fail to recover this topology (Fig. 3).
With RAxML gene trees having the lowest average
concordance (Fig. 4), we attribute this to GTEE of the
RAxML trees.

The only gene tree estimation method whose
summary trees consistently produced the same and
the correct topology is IQ-Tree with automated model
selection (MFP).

Data Filtering for Summary Analyses
In order to reduce the distorting effects of inaccurately

estimated gene trees, recent studies using summary
methods implemented a range of different filtering
strategies. The two most prominent approaches involve
the removal of entire gene trees based on an
approximation for its quality, such as informative sites or
bootstrap support, or the collapsing of poorly supported
nodes of the input gene trees into polytomies.

Removal of Entire Gene Trees.—This strategy aims at
removing gene trees that have high GTEE and hence
introduce noise into summary analyses. This approach
has not been accepted as a reasonable strategy altogether,
as it can also remove an honest signal. The important
study by Molloy and Warnow (2018) simulated GTEE on
a test data set with varying degrees of ILS and found
positive effects of gene tree removal on species tree
accuracy when GTEE is high and ILS is low. However,
for virtually all other modeled conditions, such as
increased levels of ILS or various degrees of missing
data, species tree accuracy was weakly or negatively
affected. Assessing the effects of this filtering approach
in empirical data sets is challenging because GTEE
cannot be measured (Mirarab 2019) but needs to be
approximated through an alignment or tree metric. Some
empirical studies found little reason to exclude gene trees
with low information content (e.g., Blom et al. 2016),
but other studies showed more consistent and/or better-
supported results after removing gene trees inferred
from alignments with few informative sites (Hosner
et al. 2016; Meiklejohn et al. 2016; Longo et al. 2017).
The results from our study are in line with this and
confirm positive effects on species tree accuracy when
removing gene trees estimated from low information
alignments. The quartet status assessment shows the
greatest topological discordance for the two bins of
gene trees (of 10 total) with the least informative loci
(Fig. 5), which is consistent for all gene tree estimation
methods. Strikingly, summary trees of all tested gene tree
methods except RAxML converge on the same topology
when the 25% least informative loci are removed,
whereas they produce five different topologies when
all loci are included (Fig. 3). Quartet status in the
remaining bins (bins 3–10) are similarly high, showing
that additional removal of gene trees does not bring the
desired disproportional removal of noisy loci, but an
unnecessary reduction of the total sample size. In line
with his, summary trees that include only the 50% most
informative loci are less accurate than the larger data
set (Fig. 3), which leads us to conclude that aggressive
filtering leads to adverse effects on species tree accuracy
in our study.

Interestingly, all empirical studies which showed
beneficial effects of removing noisy gene trees generated
their trees using ultraconserved elements (i.e., Hosner
et al. 2016; Meiklejohn et al. 2016; Longo et al. 2017). These
markers are characterized by relatively short, slowly
evolving DNA segments, with the most informative
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sites located in the adjacent flanking regions (Faircloth
et al. 2012; McCormack et al. 2012). This conservative
nature gives UCE gene trees a somewhat particular
status, as they have very few informative sites with
great potential for GTEE. All above-mentioned studies,
however, reduced their pool of input UCE gene trees
to a small fraction and favored results from only the
25% most informative loci or less (Hosner et al. 2016;
Meiklejohn et al. 2016; Longo et al. 2017). For our study,
this would imply the removal of a large proportion
of informative gene trees, which seems excessive. An
explanation for this lies in the different degrees of
conservation of vertebrate and Hymenopteran UCEs:
elements targeted by the amniote probe set show
substantially lower frequencies of substitution compared
to UCEs of bees (compare Faircloth et al. 2012, Fig. 3 vs.
Bossert et al. 2017, Fig. 3). For best practices on UCE data
sets, our results show that removing uninformative loci
is beneficial for species tree summary analyses, but the
threshold for including or excluding gene trees needs to
be assessed based on the individual data. Our results
suggest that the best strategy for limiting the impact of
uninformative loci is to examine the quartet status of
each locus along a gradient and exclude only those loci
which fall at the extreme end of the distribution (Fig. 5).

Collapsing Weakly Supported Nodes of Gene Trees.—
Currently, available summary methods treat individual
gene trees as observations and assume that they are
correctly inferred. ASTRAL, for example, is relatively
robust towards GTEE (Roch and Warnow 2015; Sayyari
et al. 2017) but does not take node support of input gene
trees into account. In the end, it does not matter if a clade
is highly supported based on bootstrap values, or if it is
arbitrarily solved with negligible confidence. It therefore
seems intuitive to collapse weakly supported nodes
into polytomies, in order to avoid the introduction of
noise into the summary step. A recent simulation study
examined this and found positive effects on species tree
accuracy when weakly supported nodes are collapsed
(Zhou et al. 2017). Very stringent collapsing, that is, of
nodes that are supported by bootstrap values beyond
30 (or even 20, depending on the specific conditions),
decreases species tree accuracy and is discouraged (Zhou
et al. 2017). Our summary trees confirm these simulation
results, as the summary trees become more similar to
the best species tree topology when nodes below 30%
(i.e., bootstrap values of ≤30/≤0.3 PP) are collapsed
(Fig. 3). Species trees are most in conflict with each
other and the best topology when input gene trees are
very aggressively trimmed (≤50%). This overly strict
trimming is the only condition that causes summary
trees of IQ-Tree to deviate from the best topology.

While our results show moderately positive effects
of collapsing weakly supported nodes of input gene
trees, our quartet score assessment also reveals that most
node retractions occur in loci with very low information
(Supplementary Figs. S4 and S5 available on Dryad). The

two bins of least informative loci show both the greatest
decrease in shared and conflicting quartets, as well as
the directly related increase in unresolved quartets. In
this light, it seems imprecise to indiscriminately collapse
nodes of all loci, if only those with low information
content are obviously problematic. A future inroad into
optimizing summary analyses could be the development
of a flexible procedure to collapse weakly supported
nodes only of those gene trees that have the greatest
potential for GTEE (i.e., few informative sites) or those
with unusually large amounts of conflicting quartets.
For our specific data set, however, it ultimately proved
best to discard gene trees of the least informative loci
altogether (Fig. 3). An alternative future direction is the
further development of site-based coalescent methods
such as SVDQuartets (Chifman and Kubatko 2014),
in order to circumvent the gene tree estimation step
altogether.

Gene Tree Branch Lengths and Stemminess

As current summary methods consider only the
topology of input gene trees, differences in branch
lengths do not impact the estimation of species trees
under the MSC. Nonetheless, we found significant
differences in branch length and stemminess between
tree estimation methods. The stemminess metric has
been linked to saturation and a reduction thereof
is reflected by higher, favorable stemminess values
(Longhorn et al. 2010). Saturation in turn has long been
recognized to facilitate long-branch attraction artifacts
(e.g., Philippe and Laurent 1998; Brinkmann et al. 2005).
The higher stemminess of Bayesian gene trees presented
herein indicates better accounting for sequence
saturation and reduced risk for long-branch attraction.
While this does not necessarily improve the topology of
every individual gene tree, it may reduce the number of
individual trees that are affected by such reconstruction
artifacts. The exemplified RAxML gene tree of UCE
locus 11717 has Dufourea deeply nested within Nomiinae,
likely deriving from a reconstruction artifact involving
long branches, whereas the PhyloBayes gene tree
has more reasonable topology and branch lengths
(Fig. 6). Interestingly, we found Bayesian gene trees to be
consistently more stemmy and concordant over their ML
counterparts. However, the method which produced the
stemmiest gene trees is PhyloBayes, which is the least
concordant of the three Bayesian approaches. This shows
that stemminess is not necessarily linked to concordance.

The differences in branch lengths between gene trees
of different methods cannot be simply explained by
different substitution models. Stemminess is higher for
gene trees of MrBayes with GTR+G over its RAxML and
IQ-Tree counterparts under the same model. In fact, our
data show that the underlying statistical framework of
tree estimation (Bayesian vs. ML) is the main driver of
branch length differences. Among the different Bayesian
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analyses, however, gene trees inferred using the site-
heterogeneous CAT-GTR model are stemmier than those
estimated under site-homogenous models.

Implications for Gene Tree Summary Methods
We summarized six sets of different gene trees,

estimated through four different programs, and found
five different species tree topologies when using the
unaltered gene trees as input (Fig. 3). This illustrates the
great sensitivity of coalescent-based summary analyses
towards the quality of the input gene trees and
underlines the need to optimize gene tree estimation
for minimizing GTEE. Our assessment of concordance
and resulting species tree topologies renders RAxML
as the least preferred program to estimate gene trees,
but practical recommendations are less obvious for
the remaining methods. To this end, we deem three
factors as important when considering the best approach
for inferring gene trees: concordance, fragmentation of
individual alignments (missing data type 2 following
Hosner et al. 2016), and the size of the data set to
be analyzed. First, concordance for solving the three
predefined clades is greatest for gene trees inferred
through MrBayes. This shows that GTEE at deep nodes
is lower for these trees than for those of other estimation
methods. The Bayesian gene trees, however, are more
severely affected by type 2 missing data. Our results
show IQ-Tree to be more robust towards this kind of
missing data, and render summary trees of IQ-Tree and
automated model-selection (MFP) as the only approach
that consistently produces the best topology, despite
lower concordance for deeper splits in the tree. This
indicates IQ-Tree as the best choice for estimating gene
trees using fragmentary sequence data (missing data
type 2), a finding which should ideally be reassessed
and confirmed by simulation experiments. A previous
study found IQ-Tree to be preferable over other tested
ML methods in empirical data sets, but this study did not
compare gene trees inferred through Bayesian methods
(Zhou et al. 2017). Lastly, estimation times between
methods differ greatly, and Bayesian analyses could
become unfeasible for larger data sets. The computation
of MrBayes (rj) gene trees was over 5× faster than those
of PhyloBayes, but it was still > 80× slower than the
very efficient IQ-Tree (MFP), which was the fastest of all
tested methods. For our moderately sized data set of 32
taxa, this translated into a difference of 5 days, but larger
matrices will inevitably face greater computational
challenges when choosing Bayesian methods.

For practical consideration, we suggest inferring
gene trees with MrBayes if individual alignment
fragmentation is moderate to low, and when the
computational demands allow its use in a reasonable
timeframe. With a greater degree of type 2 missing data
(sensu Hosner et al. 2016) and when Bayesian inference
becomes impracticable, we strongly recommend the use
of IQ-Tree. Further, both these methods slightly benefited
from an automated selection of substitution models,
which in the case of IQ-Tree even reduced the overall
computational time.

The “Best” Trees?
The wealth of sequence data produced in

phylogenomic data sets brings particular challenges
for computationally demanding analyses such as
divergence time estimates. Downsizing the amount
of sequence data for downstream analyses by “Gene
Shopping” (Smith et al. 2018) is common practice in the
field of molecular phylogenetics. UCE-based studies
often apply a filtering approach in which loci are
ranked by their average bootstrap support and only a
subset of the 100, 50, or 25 “best” performing loci are
used for dating analyses (e.g., Branstetter et al. 2017a;
Ješovnik et al. 2017; Blaimer et al. 2018). However, it has
never been evaluated if UCEs with the highest support
have favorable properties that deem them particularly
suitable for subsequent analyses, such as molecular
dating. Specifically, it has never been examined how
other locus selection criteria, such as filtering for
particularly long or variable UCEs, compare.

The comparative results presented in this study show
that loci with high average support perform, on average,
better than any other subset in every assessed gene tree
quality approximation (Fig. 6, Table 2). For all subsets,
the “best” gene trees are more concordant (Table 2) and
have favorable branch lengths (Fig. 6). Specifically, they
perform better than the subsets of the longest, the most
variable, and least gappy loci (lowest % of missing data).
Strikingly, they behave more clock-like than the average
gene tree, underlining their potential for divergence time
estimates.

Phylogeny and Classification of Pseudapis s.l.
Higher-level bee classification has generally been

guided or corroborated by molecular phylogenies.
However, many species groups below the family level,
such as the subfamily Nomiinae, remain unstudied from
a phylogenetic perspective (Danforth et al. 2012). Herein,
we focus on the genus Pseudapis and establish the first
phylogeny-informed classification for this distinct group
of Nomiinae.

The Pseudapis group (Fig. 2, all colored clades)
comprises 81 species from the Old World. Previous
classifications conflict in their use of genera and
subgenera, and Pseudapis s. l. has been alternatively
split into varying conformations, comprising up to six
(Pauly 1990; Baker 2002) or just two genera (Michener
2007; Ascher and Pickering 2020) (summarized in
Fig. 7). Michener’s (2007) popular bee classification
synonymizes several supraspecific names with Pseudapis
(s. str.) to prevent potential paraphyletic taxa (Nomiapis,
Stictonomia, Ruginomia), but Pachynomia remained a
subgenus of Pseudapis. The unusual Steganomus is
recognized as a separate genus and not part of Pseudapis
(Michener 2007). Similarly, the classification of the
Discover Life database (Ascher and Pickering 2020)
regards Nomiapis and Pseudapis s. str. as subgenera, and
synonymizes Stictonomia and Ruginomia with Pseudapis s.
str. Both these classifications contrast Pauly (1990, 2009),
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FIGURE 7. Reciprocal illumination of taxonomic classifications
and selected morphological characters of Pseudapis and closely related
groups. The only rank-based classification that yields monophyletic
groups is the one of Pauly (1990). Baker’s (2002) writing is inconclusive
on the placement of Ruginomia, but he indicates that generic status
may not be adequate. Morphological characters show a high degree
of homoplasy, yet all groups can be distinguished by unique
combinations of nonunique characters.

who recognizes all above-mentioned names as genera.
Baker (2002) revised Pseudapis and Nomiapis from the
Palearctic and the Oriental region and inferred them
as separate monophyletic groups in morphology-based
cladistic analyses. He follows Pauly’s (1990) classification
but concludes that the generic status of Ruginomia may
have been overstated.

Our phylogenomic results show that the classification
of Pauly (1990) is the most appropriate for Pseudapis s.
l. in that it is the only one that results in monophyletic
groups (Fig. 7). Comprising six genera, this classification
brings the highest degree of taxonomic splitting, yet
it is preferred to ensure a rank-based taxonomy of
monophyletic groups. Only recognizing Steganomus
and Pseudapis as genera (Michener 2007; Ascher and
Pickering 2020) renders the latter paraphyletic and
should be avoided. Alternatively, Steganomus could be
regarded as a subgenus within a large genus Pseudapis
that includes all lineages. However, this would also
require the acceptance of all six lineages as subgenera
of Pseudapis. As is, the classification of Pauly (1990) does
not require taxonomic changes.

Morphological characters that have both been used
to argue for and against synonymizations show a
high degree of homoplasy. The mapped characters
in Figure 7 are not exhaustive, yet they show that
readily recognized features are often present in multiple
lineages. The exception is Steganomus and the unique
absence of a third submarginal wing cell. Reciprocally
illuminating the phylogeny of Pseudapis s. l. proves
Pauly’s (1990) approach of designating genera based
on unique combinations of nonunique characters as
effective, and all groups should be identifiable with
the respective keys (Pauly 1990, Pauly 2009; Baker 2002;
Bossert and Pauly 2019).

Concatenation and most coalescent-based analyses
favor a sistergroup relationship of Ruginomia to
Stictonomia + Pachynomia (Figs. 2 and 3). Some summary
analyses of Bayesian gene trees, however, recover a
clade comprising Ruginomia + (Steganomus + (Nomiapis
+ Pseudapis)), but with weak support (Supplementary
Fig. S1 available on Dryad). If this would represent the
true tree, Ruginomia would still require generic status,
and no species tree analysis recovers Ruginomia as part
of Pseudapis, or as its sistergroup. Therefore, we need
to regard Ruginomia as separate from Pseudapis s. str. in
any case.

CONCLUSION

Our case study shows that gene trees estimated
with different estimation methods substantially differ
in topology and branch lengths, thereby decisively
impacting the accuracy of summary methods under
the multispecies coalescent model. In part, we can
attribute these differences to GTEE, which can be
reduced by choosing the most appropriate gene tree
estimation method. Even with the increasing availability
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of genomic sequence data, an important objective of
future research should be the optimization of tree
inferences of individual loci, in order to summarize the
thoroughly inferred genealogical history of thousands
of loci into single species trees.

SUPPLEMENTARY MATERIAL

This repository contains the Trinity-assemblies of the
de-novo sequenced UCEs, extracted UCE sequences
from the included genomes, and the concatenated 80%
completeness matrix. We further provide all species
trees and all 853 gene trees inferred through the
different gene tree estimation methods. Lastly, we
provide the R code that was used to infer stemminess.
Trimmed Illumina reads associated with this study
were deposited in the Sequence Read Archive (SRA
accession PRJNA494583). The EZ-PB script developed
in the course of this study is available on GitHub
(https://github.com/Bluefire2/EZPB).

Data available from the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.z08kprrb6.

FUNDING

This work was supported by a U.S. National Science
Foundation grant (DEB-1555905 to B.N.D., S.G.B., J.P.
Pitts, and R. Ross) and by Peter Buck fellowships at the
Smithsonian Institution to S.B. and E.A.M.

ACKNOWLEDGMENTS

We thank Jason Dombroskie (Cornell University
Insect Collection) and Matthew Buffington (USDA-
ARS) for access to the imaging systems. We further
thank Martin Hauser (California Department of Food
and Agriculture) for contributing specimens to this
study, and Doug Yanega for providing loans from the
Entomology Research Museum of the University of
California Riverside. The laboratory work for this study
was conducted in the L.A.B. facilities of the National
Museum of Natural History, Smithsonian Institution.

REFERENCES

Adams R.H., Castoe T.A. 2019. Statistical binning leads to profound
model violation due to gene tree error incurred by trying to avoid
gene tree error. Mol. Phylogenet. Evol. 134:164–171.

Allen M., Poggiali D., Whitaker K., Marshall T., Kievit R. 2019.
Raincloud plots: a multi-platform tool for robust data visualization.
Wellcome Open Res. 4:63.

Andrews S. 2019. FastQC: A quality control tool for
high throughput sequence data. Available from:
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
(September 2018).

Arcila D., Ortí G., Vari R., Armbruster J.W., Stiassny M.L.J., Ko K.D.,
Sabaj M.H., Lundberg J., Revell L.J., Betancur-R R. 2017. Genome-
wide interrogation advances resolution of recalcitrant groups in the
tree of life. Nat. Ecol. Evol. 1:0020.

Ascher J.S., Pickering J. 2020. Discover life bee species guide and world
checklist (Hymenoptera: Apoidea: Anthophila). Available from:
http://www.discoverlife.org/mp/20q?guide=Apoidea_species.

Baker D.B. 2002. On Palaearctic and oriental species of the genera
Pseudapis W.F. Kirby, 1900, and Nomiapis Cockerell, 1919. Beitr.
Entomol. 52:1–83.

Bayzid M.S., Mirarab S., Boussau B., Warnow T. 2015. Weighted
statistical binning: enabling statistically consistent genome-scale
phylogenetic analyses. PLoS One 10:e0129183.

Bayzid M.S., Warnow T. 2013. Naive binning improves phylogenomic
analyses. Bioinformatics 29:2277–2284.

Blaimer B.B., LaPolla J.S., Branstetter M.G., Lloyd M.W., Brady S.G.
2016a. Phylogenomics, biogeography and diversification of obligate
mealybug-tending ants in the genus Acropyga. Mol. Phylogenet.
Evol. 102:20–29.

Blaimer B.B., Lloyd M.W., Guillory W.X., Brady S.G. 2016b. Sequence
capture and phylogenetic utility of genomic ultraconserved
elements obtained from pinned insect specimens. PLoS One
11:e0161531.

Blaimer B.B., Ward P.S., Schultz T.R., Fisher B.L., Brady S.G.
2018. Paleotropical diversification dominates the evolution of
the hyperdiverse ant tribe Crematogastrini (Hymenoptera:
Formicidae). Insect Syst. Div. 2:1–14.

Blom M.P.K., Bragg J.G., Potter S., Moritz C. 2016. Accounting for
uncertainty in gene tree estimation: summary-coalescent species
tree inference in a challenging radiation of Australian Lizards. Syst.
Biol. 66:352–366.

Bolger A.M., Lohse M., Usadel B. 2014. Trimmomatic: a flexible trimmer
for Illumina sequence data. Bioinformatics 30:2114–2120.

Borowiec M.L., Lee E.K., Chiu J.C., Plachetzki D.C. 2015. Extracting
phylogenetic signal and accounting for bias in whole-genome data
sets supports the Ctenophora as sister to remaining Metazoa. BMC
Genom. 16:1–15.

Bossert S., Danforth B.N. 2018. On the universality of target enrichment
baits for phylogenomic research. Methods Ecol. Evol. 9:1453–1460.

Bossert S., Murray E.A., Blaimer B.B., Danforth B.N. 2017. The impact
of GC bias on phylogenetic accuracy using targeted enrichment
phylogenomic data. Mol. Phylogenet. Evol. 111:149–157.

Bossert S., Pauly A. 2019. Two new species of Pseudapis Kirby,
1900 (Hymenoptera: Halictidae: Nomiinae) from Africa. Zootaxa
4608:517–530.

Branstetter M.G., Danforth B.N., Pitts J.P., Faircloth B.C., Ward
P.S., Buffington M.L., Gates M.W., Kula R.R., Brady S.G. 2017a.
Phylogenomic insights into the evolution of stinging wasps and the
origins of ants and bees. Curr. Biol. 27:1019–1025.

Branstetter M.G., Longino J.T., Ward P.S., Faircloth B.C. 2017b.
Enriching the ant tree of life: enhanced UCE bait set for genome-
scale phylogenetics of ants and other Hymenoptera. Methods Ecol.
Evol. 8:768–776.

Bravo G.A., Antonelli A., Bacon C.D., Bartoszek K., Blom M.P.K.,
Huynh S., Jones G., Knowles L.L., Lamichhaney S., Marcussen T.,
Morlon H., Nakhleh L.K., Oxelman B., Pfeil B., Schliep A., Wahlberg
N., Werneck F.P., Wiedenhoeft J., Willows-Munro S., Edwards S.V.
2019. Embracing heterogeneity: coalescing the Tree of Life and the
future of phylogenomics. PeerJ 7:e6399.

Brinkmann H., van der Giezen M., Zhou Y., de Raucourt G.P., Philippe
H. 2005. An empirical assessment of long-branch attraction artefacts
in deep eukaryotic phylogenomics. Syst. Biol. 54:743–757.

Cardinal S., Buchmann S.L., Russell A.L. 2018. The evolution of floral
sonication, a pollen foraging behavior used by bees (Anthophila).
Evolution 72:590–600.

Castresana J. 2000. Selection of conserved blocks from multiple
alignments for their use in phylogenetic analysis. Mol. Biol. Evol.
17:540–552.

Chifman J., Kubatko L. 2014. Quartet inference from SNP data under
the coalescent model. Bioinformatics 30:3317–3324.

Danforth B., Brady S., Sipes S., Pearson A. 2004. Single copy nuclear
genes recover Cretaceous age divergences in bees. Syst. Biol. 53:309
- 326.

Danforth B.N., Cardinal S., Praz C., Almeida E.A.B., Michez D.
2012. The impact of molecular data on our understanding of bee
phylogeny and evolution. Annu. Rev. Entomol. 58:57–78.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/advance-article/doi/10.1093/sysbio/syaa097/6050959 by U

niversity of Idaho user on 26 M
arch 2021

https://github.com/Bluefire2/EZPB
http://dx.doi.org/10.5061/dryad.z08kprrb6
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.discoverlife.org/mp/20q?guide=Apoidea{protect LY1	extunderscore }species


BOSSERT ET AL.—GENE TREE ESTIMATION ERROR WITH UCES 17

Degnan J.H., Rosenberg N.A. 2009. Gene tree discordance,
phylogenetic inference and the multispecies coalescent. Trends
Ecol. Evol. 24:332–340.

Deng W., Maust B.S., Nickle D.C., Learn G.H., Liu Y., Heath L.,
Pond S.L.K., Mullins J.I. 2010. DIVEIN: a web server to analyze
phylogenies, sequence divergence, diversity, and informative sites.
BioTechniques 48:405–408.

Edwards S.V. 2009. Is a new and general theory of molecular
systematics emerging? Evolution 63:1–19.

Edwards S.V., Xi Z., Janke A., Faircloth B.C., McCormack J.E., Glenn
T.C., Zhong B., Wu S., Lemmon E.M., Lemmon A.R., Leaché A.D.,
Liu L., Davis C.C. 2016. Implementing and testing the multispecies
coalescent model: a valuable paradigm for phylogenomics. Mol.
Phylogenet. Evol. 94:447–462.

Faircloth B.C. 2013. illumiprocessor: a trimmomatic wrapper for
parallel adapter and quality trimming. doi: 10.6079/J9ILL.

Faircloth B.C. 2016. PHYLUCE is a software package for the analysis of
conserved genomic loci. Bioinformatics 32:786–788.

Faircloth B.C., Branstetter M.G., White N.D., Brady S.G. 2015. Target
enrichment of ultraconserved elements from arthropods provides
a genomic perspective on relationships among Hymenoptera. Mol.
Ecol. Resour. 15:489–501.

Faircloth B.C., McCormack J.E., Crawford N.G., Harvey M.G.,
Brumfield R.T., Glenn T.C. 2012. Ultraconserved elements anchor
thousands of genetic markers spanning multiple evolutionary
timescales. Syst. Biol. 61:717–726.

Fiala K.L., Sokal R.R. 1985. Factors determining the accuracy of
cladogram estimation: evaluation using computer simulation.
Evolution 39:609–622.

Gatesy J., Springer M.S. 2013. Concatenation versus coalescence versus
“concatalescence”. Proc. Natl. Acad. Sci. USA 110:E1179.

Gatesy J., Springer M.S. 2014. Phylogenetic analysis at deep
timescales: unreliable gene trees, bypassed hidden support, and the
coalescence/concatalescence conundrum. Mol. Phylogenet. Evol.
80:231–266.

Gatesy J., Sloan D.B., Warren J.M., Baker R.H., Simmons M.P, Springer
M.S. 2019. Partitioned coalescence support reveals biases in species-
tree methods and detects gene trees that determine phylogenomic
conflicts. Mol. Phylogenet. Evol. 139:106539.

Glenn T.C., Nilsen R.A., Kieran T.J., Sanders J.G., Bayona-Vásquez N.J.,
Finger J.W., Pierson T.W., Bentley K.E., Hoffberg S.L., Louha S.,
Garcia-De Leon F.J., del Rio Portilla M.A., Reed K.D., Anderson
J.L., Meece J.K., Aggrey S.E., Rekaya R., Alabady M., Belanger M.,
Winker K., Faircloth B.C. 2019. Adapterama I: universal stubs and
primers for 384 unique dual-indexed or 147,456 combinatorially-
indexed Illumina libraries (iTru & iNext). PeerJ 7:e7755.

Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A.,
Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng Q., Chen Z.,
Mauceli E., Hacohen N., Gnirke A., Rhind N., di Palma F., Birren
B.W., Nusbaum C., Lindblad-Toh K., Friedman N., Regev A. 2011.
Full-length transcriptome assembly from RNA-Seq data without a
reference genome. Nat. Biotech. 29:644–652.

Guindon S., Dufayard J.-F., Lefort V., Anisimova M., Hordijk W.,
Gascuel O. 2010. New algorithms and methods to estimate
maximum-likelihood phylogenies: assessing the performance of
PhyML 3.0. Syst. Biol. 59:307–321.

Harris R.S. 2007. Improved pairwise alignment of genomic DNA
[PhD thesis]. Computer Science and Engineering Department,
Pennsylvania State University.

Hedtke S.M., Patiny S., Danforth B.N. 2013. The bee tree of life: a
supermatrix approach to apoid phylogeny and biogeography. BMC
Evol. Biol. 13:1–13.

Hoang D.T., Chernomor O., von Haeseler A., Minh B.Q., Vinh L.S.
2018. UFBoot2: improving the ultrafast bootstrap approximation.
Mol. Biol. Evol. 35:518–522.

Hosner P.A., Faircloth B.C., Glenn T.C., Braun E.L., Kimball R.T.
2016. Avoiding missing data biases in phylogenomic inference: an
empirical study in the Landfowl (Aves: Galliformes). Mol. Biol. Evol.
33:1110–1125.

Huelsenbeck J.P., Larget B., Alfaro M.E. 2004. Bayesian phylogenetic
model selection using reversible jump Markov Chain Monte Carlo.
Mol. Biol. Evol. 21:1123–1133.

Ješovnik A., Sosa-Calvo J., Lloyd M.W., Branstetter M.G., Fernández
F., Schultz T.R. 2017. Phylogenomic species delimitation and
host-symbiont coevolution in the fungus-farming ant genus
Sericomyrmex Mayr (Hymenoptera: Formicidae): ultraconserved
elements (UCEs) resolve a recent radiation. Syst. Entomol. 42:523–
542.

Jombart T., Kendall M., Almagro-Garcia J., Colijn C. 2017. treespace:
statistical exploration of landscapes of phylogenetic trees 17:1385–
1392.

Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A.,
Jermiin L.S. 2017. ModelFinder: fast model selection for accurate
phylogenetic estimates. Nat. Methods 14:587.

Kapheim K.M., Pan H., Li C., Blatti C., Harpur B.A., Ioannidis P., Jones
B.M., Kent C.F., Ruzzante L., Sloofman L., Stolle E., Waterhouse
R.M., Zayed A., Zhang G., Wcislo W.T. 2019. Draft genome assembly
and population genetics of an agricultural pollinator, the solitary
alkali bee (Halictidae: Nomia melanderi). G3 (Bethesda) 9:625–
634.

Kapheim K.M., Pan H., Li C., Salzberg S.L., Puiu D., Magoc T.,
Robertson H.M., Hudson M.E., Venkat A., Fischman B.J., Hernandez
A., Yandell M., Ence D., Holt C., Yocum G.D., Kemp W.P., Bosch
J., Waterhouse R.M., Zdobnov E.M., Stolle E., Kraus F.B., Helbing
S., Moritz R.F.A., Glastad K.M., Hunt B.G., Goodisman M.A.D.,
Hauser F., Grimmelikhuijzen C.J.P., Pinheiro D.G., Nunes F.M.F.,
Soares M.P.M., Tanaka É.D., Simões Z.L.P., Hartfelder K., Evans
J.D., Barribeau S.M., Johnson R.M., Massey J.H., Southey B.R.,
Hasselmann M., Hamacher D., Biewer M., Kent C.F., Zayed A.,
Blatti C., Sinha S., Johnston J.S., Hanrahan S.J., Kocher S.D., Wang J.,
Robinson G.E., Zhang G. 2015. Genomic signatures of evolutionary
transitions from solitary to group living. Science 348:1139–
1143.

Katoh K., Standley D.M. 2013. MAFFT multiple sequence alignment
software version 7: improvements in performance and usability.
Mol. Biol. Evol. 30:772–780.

Kendall M., Colijn C. 2016. Mapping phylogenetic trees to reveal
distinct patterns of evolution. Mol. Biol. Evol. 33:2735–2743.

Kendall M., Eldholm V., Colijn C. 2018. Comparing phylogenetic trees
according to tip label categories. BioRxiv 251710.

Kocher S., Li C., Yang W., Tan H., Yi S., Yang X., Hoekstra H., Zhang G.,
Pierce N., Yu D. 2013. The draft genome of a socially polymorphic
halictid bee, Lasioglossum albipes. Genome Biol. 14:R142.

Kubatko L.S., Degnan J.H. 2007. Inconsistency of phylogenetic
estimates from concatenated data under coalescence. Syst. Biol.
56:17–24.

Kück P., Greve C., Misof B., Gimnich F. 2012. Automated masking of
AFLP markers improves reliability of phylogenetic analyses. PLoS
One 7:e49119.

Lartillot N. 2013. Phylogenetic patterns of GC-biased gene conversion
in placental mammals and the evolutionary dynamics of
recombination landscapes. Mol. Biol. Evol. 30:489–502.

Lartillot N., Brinkmann H., Philippe H. 2007. Suppression of long-
branch attraction artefacts in the animal phylogeny using a site-
heterogeneous model. BMC Evol. Biol. 7:1–14.

Lartillot N., Lepage T., Blanquart S. 2009. PhyloBayes 3: a Bayesian
software package for phylogenetic reconstruction and molecular
dating. Bioinformatics 25:2286–2288.

Lartillot N., Philippe H. 2004. A bayesian mixture model for across-site
heterogeneities in the amino-acid replacement process. Mol. Biol.
Evol. 21:1095–1109.

Lartillot N., Rodrigue N., Stubbs D., Richer J. 2013. PhyloBayes MPI:
phylogenetic reconstruction with infinite mixtures of profiles in a
parallel environment. Syst. Biol. 62:611–615.

Leebens-Mack J.H., Barker M.S., Carpenter E.J., Deyholos M.K.,
Gitzendanner M.A., Graham S.W., Grosse I., Li Z., Melkonian M.,
Mirarab S., Porsch M., Quint M., Rensing S.A., Soltis D.E., Soltis
P.S., Stevenson D.W., Ullrich K.K., Wickett N.J., DeGironimo L.,
Edger P.P., Jordon-Thaden I.E., Joya S., Liu T., Melkonian B., Miles
N.W., Pokorny L., Quigley C., Thomas P., Villarreal J.C., Augustin
M.M., Barrett M.D., Baucom R.S., Beerling D.J., Benstein R.M.,
Biffin E., Brockington S.F., Burge D.O., Burris J.N., Burris K.P.,
Burtet-Sarramegna V., Caicedo A.L., Cannon S.B., Çebi Z., Chang
Y., Chater C., Cheeseman J.M., Chen T., Clarke N.D., Clayton H.,

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/advance-article/doi/10.1093/sysbio/syaa097/6050959 by U

niversity of Idaho user on 26 M
arch 2021



18 SYSTEMATIC BIOLOGY

Covshoff S., Crandall-Stotler B.J., Cross H., dePamphilis C.W., Der
J.P., Determann R., Dickson R.C., Di Stilio V.S., Ellis S., Fast E., Feja
N., Field K.J., Filatov D.A., Finnegan P.M., Floyd S.K., Fogliani B.,
García N., Gâteblé G., Godden G.T., Goh F., Greiner S., Harkess A.,
Heaney J.M., Helliwell K.E., Heyduk K., Hibberd J.M., Hodel R.G.J.,
Hollingsworth P.M., Johnson M.T.J., Jost R., Joyce B., Kapralov M.V.,
Kazamia E., Kellogg E.A., Koch M.A., Von Konrat M., Könyves K.,
Kutchan T.M., Lam V., Larsson A., Leitch A.R., Lentz R., Li F.-W.,
Lowe A.J., Ludwig M., Manos P.S., Mavrodiev E., McCormick M.K.,
McKain M., McLellan T., McNeal J.R., Miller R.E., Nelson M.N., Peng
Y., Ralph P., Real D., Riggins C.W., Ruhsam M., Sage R.F., Sakai A.K.,
Scascitella M., Schilling E.E., Schlösser E.-M., Sederoff H., Servick
S., Sessa E.B., Shaw A.J., Shaw S.W., Sigel E.M., Skema C., Smith
A.G., Smithson A., Stewart C.N., Stinchcombe J.R., Szövényi P., Tate
J.A., Tiebel H., Trapnell D., Villegente M., Wang C.-N., Weller S.G.,
Wenzel M., Weststrand S., Westwood J.H., Whigham D.F., Wu S.,
Wulff A.S., Yang Y., Zhu D., Zhuang C., Zuidof J., Chase M.W., Pires
J.C., Rothfels C.J., Yu J., Chen C., Chen L., Cheng S., Li J., Li R., Li
X., Lu H., Ou Y., Sun X., Tan X., Tang J., Tian Z., Wang F., Wang J.,
Wei X., Xu X., Yan Z., Yang F., Zhong X., Zhou F., Zhu Y., Zhang Y.,
Ayyampalayam S., Barkman T.J., Nguyen N.-p., Matasci N., Nelson
D.R., Sayyari E., Wafula E.K., Walls R.L., Warnow T., An H., Arrigo
N., Baniaga A.E., Galuska S., Jorgensen S.A., Kidder T.I., Kong H.,
Lu-Irving P., Marx H.E., Qi X., Reardon C.R., Sutherland B.L., Tiley
G.P., Welles S.R., Yu R., Zhan S., Gramzow L., Theißen G., Wong
G.K.-S., One Thousand Plant Transcriptomes I. 2019. One thousand
plant transcriptomes and the phylogenomics of green plants. Nature
574:679–685.

Longhorn S.J., Pohl H.W., Vogler A.P. 2010. Ribosomal protein genes
of holometabolan insects reject the Halteria, instead revealing a
close affinity of Strepsiptera with Coleoptera. Mol. Phylogenet. Evol.
55:846–859.

Longo S.J., Faircloth B.C., Meyer A., Westneat M.W., Alfaro M.E.,
Wainwright P.C. 2017. Phylogenomic analysis of a rapid radiation
of misfit fishes (Syngnathiformes) using ultraconserved elements.
Mol. Phylogenet. Evol. 113:33–48.

Maddison W.P. 1997. Gene trees in species trees. Syst. Biol. 46:523–536.
Mai U., Mirarab S. 2018. TreeShrink: fast and accurate detection of

outlier long branches in collections of phylogenetic trees. BMC
Genom. 19:272.

McCormack J.E., Faircloth B.C., Crawford N.G., Gowaty P.A.,
Brumfield R.T., Glenn T.C. 2012. Ultraconserved elements are novel
phylogenomic markers that resolve placental mammal phylogeny
when combined with species-tree analysis. Genome Res. 22:746–754.

Meiklejohn K.A., Faircloth B.C., Glenn T.C., Kimball R.T., Braun
E.L. 2016. Analysis of a rapid evolutionary radiation using
ultraconserved elements: evidence for a bias in some multispecies
coalescent methods. Syst. Biol. 65:612–627.

Michener C.D. 2007. The bees of the world. Baltimore: The Johns
Hopkins University Press.

Minh B.Q., Schmidt H.A., Chernomor O., Schrempf D., Woodhams
M.D., von Haeseler A., Lanfear R. 2020. IQ-TREE 2: new models
and efficient methods for phylogenetic inference in the genomic era.
Mol. Biol. Evol.

Mirarab S. 2019. Species tree estimation using ASTRAL: practical
considerations. arXiv preprint arXiv:1904.03826.

Mirarab S., Bayzid M., Boussau B., Warnow T. 2014a. Statistical binning
improves species tree estimation in the presence of gene tree
incongruence. Science 346:1250463.

Mirarab S., Bayzid M.S., Warnow T. 2014b. Evaluating summary
methods for multilocus species tree estimation in the presence of
incomplete lineage sorting. Syst. Biol. 65:366–380.

Mirarab S., Warnow T. 2015. ASTRAL-II: coalescent-based species tree
estimation with many hundreds of taxa and thousands of genes.
Bioinformatics 31:i44-i52.

Molloy E.K., Warnow T. 2018. To include or not to include: the impact of
gene filtering on species tree estimation methods. Syst. Biol. 67:285–
303.

Murtagh F., Legendre P. 2014. Ward’s hierarchical agglomerative
clustering method: which algorithms implement ward’s criterion?
J. Class. 31:274–295.

Patel S., Kimball R.T., Braun E.L. 2013. Error in phylogenetic estimation
for bushes in the tree of life. J. Phylogen. Evol. Biol. 1:1–10.

Pauly A. 1990. Classification des Nomiinae Africains (Hymenoptera
Apoidea Halictidae). Musée Royal de l’Afrique Centrale Tervuren,
Belgique 261:1–206.

Pauly A. 2009. Classification des Nomiinae de la Région Orientale, de
Nouvelle-Guinée et des îles de l’Océan Pacifique (Hymenoptera:
Apoidea: Halictidae). Bull. Inst. Roy. Sci. Nat. Belgique 79:151–229.

Philippe H., Laurent J. 1998. How good are deep phylogenetic trees?
Curr. Opin. Genet. Dev. 8:616–623.

Portik D.M., Wiens J.J. 2020. Do alignment and trimming
methods matter for phylogenomic (UCE) Analyses? Syst. Biol.
doi: 10.1093/sysbio/syaa064.

Price M.N., Dehal P.S., Arkin A.P. 2010. FastTree 2 – approximately
maximum-likelihood trees for large alignments. PLoS One 5:e9490.

Rannala B., Yang Z. 2003. Bayes estimation of species divergence times
and ancestral population sizes using DNA sequences from multiple
loci. Genetics 164:1645–1656.

Roch S., Steel M. 2015. Likelihood-based tree reconstruction on a
concatenation of aligned sequence data sets can be statistically
inconsistent. Theor. Popul. Biol. 100:56–62.

Roch S., Warnow T. 2015. On the robustness to gene tree estimation error
(or lack thereof) of coalescent-based species tree methods. Syst. Biol.
64:663–676.

Rohlf F.J., Chang W., Sokal R., Kim J. 1990. Accuracy of estimated
phylogenies: effects of tree topology and evolutionary model.
Evolution 44:1671–1684.

Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A.,
Höhna S., Larget B., Liu L., Suchard M.A., Huelsenbeck J.P. 2012.
MrBayes 3.2: efficient bayesian phylogenetic inference and model
choice across a large model space. Syst. Biol. 61:539–542.

Saghai-Maroof M.A., Soliman K.M., Jorgensen R.A., Allard R.W.
1984. Ribosomal DNA spacer-length polymorphisms in barley:
mendelian inheritance, chromosomal location, and population
dynamics. Proc. Natl. Acad. Sci. USA 81:8014–8018.

Sayyari E., Whitfield J.B., Mirarab S. 2017. Fragmentary gene sequences
negatively impact gene tree and species tree reconstruction. Mol.
Biol. Evol. 34:3279–3291.

Smith B.T., Harvey M.G., Faircloth B.C., Glenn T.C., Brumfield R.T. 2014.
Target capture and massively parallel sequencing of ultraconserved
elements for comparative studies at shallow evolutionary time
scales. Syst. Biol. 63:83–95.

Smith M.R. 2019. Bayesian and parsimony approaches reconstruct
informative trees from simulated morphological datasets. Biol. Lett.
15:20180632.

Smith M.R. 2020. Quartet: comparison of phylogenetic trees using
quartet and bipartition measures (Version v1.1.0). Zenodo Available
from: http://doi.org/10.5281/zenodo.3630138.

Smith S.A., Brown J.W., Walker J.F. 2018. So many genes, so little time:
a practical approach to divergence-time estimation in the genomic
era. PLoS One 13:e0197433.

Springer M.S., Gatesy J. 2016. The gene tree delusion. Mol. Phylogenet.
Evol. 94:1–33.

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis
and post-analysis of large phylogenies. Bioinformatics 30:1312–1313.

Streicher J.W., Miller E.C., Guerrero P.C., Correa C., Ortiz J.C.,
Crawford A.J., Pie M.R., Wiens J.J. 2018. Evaluating methods for
phylogenomic analyses, and a new phylogeny for a major frog clade
(Hyloidea) based on 2214 loci. Mol. Phylogenet. Evol. 119:128–143.

Tagliacollo V.A., Lanfear R. 2018. Estimating improved partitioning
schemes for ultraconserved elements. Mol. Biol. Evol. 35:1798–1811.

Talavera G., Castresana J. 2007. Improvement of phylogenies after
removing divergent and ambiguously aligned blocks from protein
sequence alignments. Syst. Biol. 56:564–577.

Tong K.J., Duchêne D.A., Duchêne S., Geoghegan J.L., Ho S.Y.W. 2018.
A comparison of methods for estimating substitution rates from
ancient DNA sequence data. BMC Evol. Biol. 18:70.

Van Dam M.H., Henderson J.B., Esposito L., Trautwein M. 2020.
Genomic characterization and curation of UCEs improves species
tree reconstruction. Syst. Biol. doi: 10.1093/sysbio/syaa063.

Van Dam M.H., Lam A.W., Sagata K., Gewa B., Laufa R., Balke M.,
Faircloth B.C., Riedel A. 2017. Ultraconserved elements (UCEs)

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/advance-article/doi/10.1093/sysbio/syaa097/6050959 by U

niversity of Idaho user on 26 M
arch 2021

http://doi.org/10.5281/zenodo.3630138


BOSSERT ET AL.—GENE TREE ESTIMATION ERROR WITH UCES 19

resolve the phylogeny of Australasian smurf-weevils. PLoS One
12:e0188044.

Wickett N.J., Mirarab S., Nguyen N., Warnow T., Carpenter E., Matasci
N., Ayyampalayam S., Barker M.S., Burleigh J.G., Gitzendanner
M.A. 2014. Phylotranscriptomic analysis of the origin and early
diversification of land plants. Proc. Natl. Acad. Sci. USA 111:E4859-
E4868.

Xi Z., Liu L., Davis C.C. 2015. Genes with minimal phylogenetic
information are problematic for coalescent analyses when gene tree
estimation is biased. Mol. Phylogenet. Evol. 92:63–71.

Xi Z., Liu L., Davis C.C. 2016. The impact of missing data on species
tree estimation. Mol. Biol. Evol. 33:838–860.

Xu B., Yang Z. 2016. Challenges in species tree estimation under the
multispecies coalescent model. Genetics 204:1353–1368.

Zhang C., Rabiee M., Sayyari E., Mirarab S. 2018. ASTRAL-III:
polynomial time species tree reconstruction from partially resolved
gene trees. BMC Bioinformatics 19:153.

Zhou X., Shen, X.-X., Hittinger C.T., Rokas A. Evaluating fast
maximum likelihood-based phylogenetic programs using empirical
phylogenomic data sets. Mol. Biol. Evol. 35:486–503.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/advance-article/doi/10.1093/sysbio/syaa097/6050959 by U

niversity of Idaho user on 26 M
arch 2021


	Gene Tree Estimation Error with Ultraconserved Elements: An Empirical Study on Pseudapis Bees

